111.1 (6)	F(8)—C(20)—F(9)	112.3 (9)
112.4 (6)	F(7)—C(20)—F(9)	109.5 (10)
106.3 (6)	F(7)—C(20)—F(8)	102.8 (10)
)—C(4)—O(2)	154.5 (7)	
)—C(4)—O(2)	-10.4(10)	
)-C(3)-C(2)	9.3 (7)	
)-C(1)-N(2)	-14.9(7)	
-C(2) - O(1)	172.9 (7)	
-C(1)-N(1)	15.9 (8)	
-C(2)-C(3)	-10.8(8)	
-C(3)-N(1)	177.2 (7)	
-C(3)-N(1)	0.7 (7)	
-C(3)-C(16)	52.9 (9)	
)-C(16)-C(17) 62.5 (8)	
)-C(16)-C(17) -52.4 (9)	
-C(5)-C(10)	-43.8(10)	
6)C(17)F(1	-39.6(9)	
6)-C(17)-F(2) 77.1 (8)	
6)-C(17)-C(1	-162.8(6)	
17)-C(18)-C(19) -174.8(7)	
7)—C(18)—F(3)	75.2 (7)	
18)-C(19)-C(20) -171.6(8)	
	$\begin{array}{c} 111.1 (6) \\ 112.4 (6) \\ 106.3 (6) \\)-C(4)-O(2) \\)-C(3)-C(2) \\)-C(3)-C(2) \\)-C(1)-N(2) \\)-C(2)-O(1) \\)-C(2)-O(1) \\)-C(3)-N(1) \\)-C(3)-N(1) \\)-C(3)-N(1) \\)-C(3)-N(1) \\)-C(3)-C(16) \\)-C(16)-C(17) \\)-C(16)-C(17) \\)-C(16)-C(17)-F(1) \\ 6)-C(17)-F(2) \\ 6)-C(17)-F(2) \\ 6)-C(17)-F(2) \\ 6)-C(17)-C(18)-C(2) \\ 17)-C(18)-C(2) \\)-C(19)-C(19)-C(18) \\ 0-C(19)-C(19)-C(19)-C(19)-C(19) \\ 0-C(19)-$	111.1 (6) $F(8)$ — $C(20)$ — $F(9)$ 112.4 (6) $F(7)$ — $C(20)$ — $F(9)$ 106.3 (6) $F(7)$ — $C(20)$ — $F(8)$)— $C(4)$ — $O(2)$ 154.5 (7))— $C(4)$ — $O(2)$ -164.9 (7))— $C(1)$ — $N(2)$ -14.9 (7))— $C(1)$ — $N(2)$ -14.9 (7))— $C(2)$ — $O(1)$ 172.9 (7))— $C(2)$ — $O(1)$ 172.9 (7))— $C(2)$ — $C(3)$ -10.8 (8) $C)$ — $C(2)$ — $C(3)$ -10.8 (8) $C)$ — $C(3)$ — $C(16)$ 52.9 (9))— $C(16)$ — $C(17)$ 62.5 (8))— $C(2)$ — $C(10)$ -43.8 (10) $C)$ — $C(17)$ — $F(2)$ 77.1 (8) $C)$ — $C(17)$ — $F(2)$ 77.1 (8) $C)$ — $C(18)$ — $C(19)$ -174.8 (7) $T)$ — $C(18)$ — $C(20)$ -171.6 (8)

The positional parameters of all H atoms were refined with a common isotropic displacement factor. Refinement was by full-matrix least squares.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: SDP (Frenz, 1984). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELX76 (Sheldrick, 1976). Molecular graphics: PEANUT (Hummel, Hauser & Bürgi, 1990). Software used to prepare tables for publication: PARST (Nardelli, 1983).

We thank the Swiss National Science Foundation for financial support and Professor H.-B. Bürgi and Dr D. De Ridder (Laboratorium für chemische und mineralogische Kristallographie) for instructive discussions.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, complete geometry and intermolecular contacts less than 3.5 Å have been deposited with the IUCr (Reference: SH1082). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Beckwith, A. L. J. & Chai, C. L. L. (1990). J. Chem. Soc. Chem. Commun. pp. 1087–1088.
- Büchel, R. (1994). PhD thesis, Univ. of Berne.
- Chakrabarti, P. & Dunitz, J. D. (1982). Helv. Chim. Acta, 65, 1555-1562.
- Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Top. Stereochem. 9, 271–383.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Frenz, B. A. (1984). Enraf-Nonius Structure Determination Package. College Station, Texas, USA, and Enraf-Nonius, Delft, The Netherlands.
- Hummel, W., Hauser, J. & Bürgi, H.-B. (1990). J. Mol. Graphics, 8, 214-220.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Sereda, S. V., Antipin, M. Yu., Timofeeva, T. V. & Struchkov, Yu. T. (1988). Sov. Phys. Crystallogr. 33, 223-225.
- Sereda, S. V., Antipin, M. Yu., Timofeeva, T. V., Struchkov, Yu. T. & Shelyazhenko, S. V. (1987a). Sov. Phys. Crystallogr. 32, 204–208.

© 1994 International Union of Crystallography Printed in Great Britain – all rights reserved

- Sereda, S. V., Antipin, M. Yu., Timofeeva, T. V., Struchkov, Yu. T. & Shelyazhenko, S. V. (1987b). Sov. Phys. Crystallogr. 32, 685–691.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.

Acta Cryst. (1994). C50, 1805-1807

Product of a Paterno–Büchi Reaction of Pentafluorobenzaldehyde and 1-Acetoxycyclododecene

CAROLYN PRATT BROCK AND DAVID S. WATT

Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA

HIROYUKI MORITA

Department of Chemistry and Biological Engineering, Toyama University, Toyama 930, Japan

(Received 23 November 1993; accepted 30 March 1994)

Abstract

The stereochemistry of 14-pentafluorophenyl-13-oxabicyclo[10.2.0]tetradecan-1-yl acetate, $C_{21}H_{25}F_5O_3$, the photoaddition product of pentafluorobenzaldehyde to 1acetoxycyclododecene, has been established. The aryl and acetoxy substituents are *cis*, and the ring fusion is *trans*.

Comment

In the course of the development of a synthesis of the 3acetoxyoxetane subunit in the antineoplastic agent taxol (Wani, Taylor, Wall, Coggan & McPhail, 1971), we examined the prospects for using a Paterno-Büchi reaction of enol acetates and benzaldehydes to introduce this particular moiety. The stereoselectivity of the photoaddition of various benzaldehydes was investigated in several acyclic and cyclic enol acetates. As expected (Paterno & Chietti, 1909; Büchi, Imman & Lipinsky, 1954; Jones, 1981), the aryl and acetoxy groups have a cis relationship in the products, a finding supported by chemical-shift data in the ¹H NMR spectra. In the case of 1-acetoxycyclododecene, the enol acetate (1) was a mixture of E/Z isomers and the photoaddition with pentafluorobenzaldehyde, (2), could lead to a product in which the acetoxy group and the bridgehead methine possessed either a cis, (3), or trans, (4), relationship. The structure determination established that the principal product of the reaction was the oxetane (4) arising from (1E)-1-acetoxycyclododecene, (1E).

Fig. 1. Perspective drawing of the molecule showing the atomnumbering scheme. The ellipsoids have been drawn at the 50% probability level. H atoms have been omitted for clarity.

Fig. 2. Stereoscopic drawing of the unit cell. The b axis runs from right to left, the c axis runs downwards and the a axis points out of the plane of the paper.

Experimental

The compound was obtained by the procedure described by Vasuderan, Brock, Watt & Morita (1994). Crystals were grown by slow evaporation of EtOH solutions.

Crystal data

 $C_{21}H_{25}F_5O_3$ $M_r = 420.42$ Monoclinic $P2_1/n$ a = 8.6548 (4) Å b = 15.8640 (7) Å c = 14.9305 (12) Å $\beta = 94.338 (5)^{\circ}$ V = 2044.1 (2) Å³ Z = 4 $D_x = 1.366 \text{ Mg m}^{-3}$

Data collection

Refinement

S = 1.130

refined

F1 F2 F3 F4 F5 01 02 03 C1 C2 C3 C4 C5 Č6 **C**7

C8

C9

C10

Enraf-Nonius CAD-4-VAX diffractometer $\omega/2\theta$ scans Absorption correction: none 4682 measured reflections 4682 independent reflections 1823 observed reflections $[I > 2\sigma(I)]$

Mo $K\alpha$ radiation $\lambda = 0.71073$ Å Cell parameters from 22 reflections $\theta = 12.2 - 13.1^{\circ}$ $\mu = 0.114 \text{ mm}^{-1}$ T = 296 (1) K Rhomboidal tablet; major faces {010} $0.5 \times 0.4 \times 0.3$ mm Colorless

- $\theta_{\rm max} = 27.5^{\circ}$ $h = 0 \rightarrow 11$ $k = 0 \rightarrow 20$ $l = -19 \rightarrow 19$ 3 standard reflections frequency: 60 min intensity variation: <0.1%
- Refinement on F^2 $(\Delta/\sigma)_{\rm max} = 0.048$ $\Delta \rho_{\text{max}} = 0.13 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.18 \text{ e } \text{\AA}^{-3}$ $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.132$ Extinction correction: none 4681 reflections Atomic scattering factors 262 parameters from International Tables H-atom parameters not for Crystallography (1992, Vol. C, Tables 4.2.6.8 and $w = 1/[\sigma^2(F_o^2) + (0.1000P)^2]$ 6.1.1.4) where $P = (F_o^2 + 2F_c^2)/3$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

x	у	z	U_{eq}
0.3749 (2)	0.41062 (10)	0.47800 (10)	0.1111 (5)
0.2851 (2)	0.54301 (12)	0.5671 (2)	0.1435 (7)
0.2577 (2)	0.53413 (15)	0.7466 (2)	0.1662 (9)
0.3245 (2)	0.3881 (2)	0.83472 (12)	0.1620 (9)
0.4161 (2)	0.25315 (14)	0.74559 (10)	0.1264 (6)
0.5524 (2)	0.26332 (12)	0.49334 (12)	0.0958 (6)
0.20181 (15)	0.24463 (8)	0.46420 (9)	0.0665 (4)
0.0956 (2)	0.23770 (11)	0.59673 (11)	0.0866 (5)
0.3368 (2)	0.19814 (14)	0.49725 (13)	0.0665 (6)
0.2980 (3)	0.10833 (14)	0.5226 (2)	0.0780 (7)
0.2229 (3)	0.05893 (14)	0.4446 (2)	0.0774 (6)
0.2251 (3)	-0.0363 (2)	0.4552 (2)	0.0947 (8)
0.1878 (3)	-0.0850 (2)	0.3691 (2)	0.1022 (9)
0.2920 (3)	-0.0620(2)	0.2941 (2)	0.0904 (7)
0.2221 (3)	0.0029 (2)	0.2296 (2)	0.0911 (8)
0.3366 (3)	0.0543 (2)	0.1801 (2)	0.0961 (8)
0.4315 (3)	0.1169 (2)	0.2381 (2)	0.0829 (7)
0.3417 (3)	0.1928 (2)	0.2690(2)	0.0807(7)

C11	0.4309 (3)	0.2477 (2)	0.3398 (2)	0.0823 (7)
C12	0.4619(2)	0.2084 (2)	0.4302 (2)	0.0744 (6)
C13	0.4502 (3)	0.2483 (2)	0.5626 (2)	0.0810(7)
C14	0.0881 (2)	0.25864 (15)	0.5201 (2)	0.0717 (6)
C15	-0.0429 (3)	0.3047 (2)	0.4712 (2)	0.1093 (9)
C16	0.4012 (2)	0.3267 (2)	0.6089 (2)	0.0787 (6)
C17	0.3660 (3)	0.4026 (2)	0.5664 (2)	0.0851 (7)
C18	0.3191 (3)	0.4710(2)	0.6125 (3)	0.1016 (8)
C19	0.3048 (3)	0.4666 (3)	0.7033 (3)	0.1107 (10)
C20	0.3393 (3)	0.3934 (3)	0.7464 (2)	0.1087 (10
C21	0.3864 (3)	0.3250 (2)	0.6996 (2)	0.0951 (8)

Table 2. Selected geometric parameters (Å, °)

	•	•	
F1C17	1.334 (3)	C5C6	1.534 (4
F2C18	1.349 (3)	C6C7	1.504 (3
F3C19	1.331 (4)	C7C8	1.518 (3
F4—C20	1.337 (3)	C8C9	1.518 (4
F5—C21	1.345 (3)	C9-C10	1.523 (3
01C13	1.431 (3)	C10-C11	1.533 (3
01—C12	1.466 (3)	C11C12	1.492 (3
O2C14	1.356 (2)	C13C16	1.501 (3
02C1	1.437 (2)	C14—C15	1.492 (3
O3C14	1.188 (3)	C16-C21	1.370 (3
C1—C2	1.518 (3)	C16-C17	1.384 (3
C1-C12	1.538 (3)	C17—C18	1.363 (4
C1C13	1.550 (3)	C18-C19	1.372 (4
C2C3	1.509 (3)	C19C20	1.350 (5
C3—C4	1.519 (3)	C20-C21	1.369 (4
C4—C5	1.513 (4)		
C13—O1—C12	92.1 (2)	C16-C13-C1	121.9 (2)
C1402C1	118.8 (2)	O3-C14-O2	123.9 (2)
O2C1C2	112.2 (2)	O3C14C15	126.3 (2)
O2-C1C12	108.4 (2)	O2C14C15	109.8 (2)
C2C1C12	116.2 (2)	C21C16C17	115.9 (3)
O2—C1—C13	114.4 (2)	C21-C16-C13	119.3 (3)
C2C1C13	117.8 (2)	C17C16C13	124.7 (2)
C12—C1—C13	84.9 (2)	F1-C17-C18	117.7 (3)
C3C1	112.7 (2)	F1-C17-C16	120.6 (2)
C2C3C4	115.8 (2)	C18-C17-C16	121.6 (3)
C5C4C3	114.8 (2)	F2C18C17	118.9 (3)
C4—C5—C6	113.5 (2)	F2-C18-C19	120.5 (3)
C7C6C5	113.6 (2)	C17C18C19	120.7 (3)
C6—C7—C8	115.7 (2)	F3-C19-C20	121.7 (4)
С9С8С7	114.8 (2)	F3-C19-C18	119.5 (4)
C8-C9-C10	115.1 (2)	C20-C19-C18	118.8 (3)
C9C10C11	114.6 (2)	F4—C20—C19	119.3 (4)
C12—C11—C10	115.7 (2)	F4—C20—C21	120.6 (4)
O1-C12-C11	112.6 (2)	C19—C20—C21	120.1 (3)
01—C12—C1	90.7 (2)	F5C21C20	117.6 (3)
C11—C12—C1	123.1 (2)	F5-C21-C16	119.5 (3)
01—C13—C16	114.0 (2)	C20-C21-C16	122.8 (3)
01-C13-C1	91.6(2)		

Data collection and cell refinement; CAD-4-VAX diffractometer software (Enraf–Nonius, 1988). Program(s) used to solve structure: *SHELXTL/PC* (Sheldrick, 1990). Program(s) used to refine structure: *SHELXL*93 (Sheldrick, 1993).

We acknowledge support of the University of Kentucky Major Research Instrumentation Bond Program in the purchase of equipment used in this study (bond ID# 7E-8E48-25) and Professor Joseph Wilson for the use of photochemical equipment.

References

- Büchi, G., Imman, C. G. & Lipinsky, E. S. (1954). J. Am. Chem. Soc. 76, 4327-4331.
- Enraf-Nonius (1988). CAD-4 Manual. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Jones, G. II (1981). Organic Photochemistry, Vol. 5, edited by A. Padwa, pp. 1-122. New York: Marcel Dekker.
- Paterno, E. & Chietti, G. (1909). Gazz. Chim. Ital. 39, 341-361.
- Sheldrick, G. M. (1990). SHELXTL/PC Users Manual. Siemens Analytical Instruments, Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for Crystal Structure Refinement. Univ. of Göttingen, Germany.
- Vasuderan, S., Brock, C. P., Watt, D. S. & Morita, H. (1994). J. Org. Chem. In the press.
- Wani, M. C., Taylor, H. L., Wall, M. E., Coggan, P. & McPhail, A. T. (1971). J. Am. Chem. Soc. 93, 2325–2327.

Acta Cryst. (1994). C50, 1807-1809

Bis(pyridiniopropionate) Hydrogen Bromide

XIAO-MING CHEN[†] AND THOMAS C. W. MAK*

Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong

(Received 2 August 1993; accepted 31 January 1994)

Abstract

A novel anhydrous 2:1 acid adduct of a betaine derivative, pyridiniopropionate (ppbet), has been prepared, $C_{16}H_{19}N_2O_4^+.Br^-$ (I). X-ray crystallography revealed that the carboxylate groups of a pair of ppbet molecules are bridged by a proton in an unusual non-coplanar configuration to form a Ushaped dimeric cation [(ppbet)₂H]⁺, featuring a very strong hydrogen bond of length 2.450 (6) Å.

Comment

As zwitterions with terminal quaternary ammonium and carboxylate groups, betaine and its derivatives are good proton acceptors, and very strong hydrogen bonds are found in crystalline acid adducts such as $[(bet)_2H]Cl.H_2O$ (bet = Me₃N⁺CH₂CO₂⁻) (Chen & Mak, 1990a) and $[(pybet)_2H]Cl.H_2O$ (pybet = $C_5H_5N^+CH_2CO_2^-)$ (Chen & Mak, 1990b). In the strongly hydrogen-bonded dimeric cations of these two betaine-acid adducts, the pair of carboxylate groups are centrosymmetrically related with an O···O distance of *ca* 2.45 Å. It is found that the carboxylate group of betaines is significantly affected by

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: CR1120). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[†] On leave from the Department of Chemistry, Zhongshan University, Guangzhou 510275, People's Republic of China.